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I. INTRODUCTION

As is well known, Sobolcv spaces are spaces of functions of fl variables
with suitably defined generalized partial derivatives belonging to L p ,

1 ~ p ~ 00. In this note we shall deal with the extension to the case
o< p < I. The impetus for such an extension originally (cf. [6]) came from
the problem of determining the class of functions having a given degree of
approximation in certain nonlinear situations; as an example we may mention
approximation by rational functions, a question that in our opinion does
not yet seem to have obtained a completely adequate treatment (cf. e.g.,
Lorentz [5, chapter 6] and the references given there). Since we shall mainly
be dealing with pathology, it will be sufficient to take fl-c I. There are
several possible definitions of a Sobolev space, which are all equivalent if
1 ~ P 00. Here we shall mainly be dealing with the following one.

DEFINITION 1.1. The Sobolev space Wr/" , °< P < I, III an integer >0,
over the interval 1 = [a, b] is the (abstract) completion of C~), the space of
infinitely differentiable functions over I, in the quasinorm:

II fli m )~" (l'j'I'" --l-- Ilf' Ii') --1- '" -+-llf(m) ,"" )1/".I. I,Wp IlL" f" f(L p ' I ,ILp
(1.] )

]n general it g IIL
p

C_" Cf~ I g(x)jJJ dX)I/P, and l' ~= djjdx, ... ,fi''') =d"fldx'''.
It is easy to see that there is a natural mapping ex: Wpl" --->- L)) which is

linear and continuous. As was shown years ago by Douady [3], contrary to
the case 1 p 00, ex fails to be a monomorphism. Here we shall show
that actually ex has a "retraction," i.e., there exists a continuous linear
mapping (3: L p --->- W p '" such that ex (3 id= the identity mapping, i.e., entirely
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contradictory to common sense, L p can be embedded in Wplil. In addition,
we have 30 f3 = 0 where 3: Wpm -~ W;,-1 denotes "derivation." It follows
easily that Wp'" is isomorphic (as a topological vector space), indeed even
isometric, to L 1) • Thus by a classical result of Day [2], the dual of Wpm is O.
It follows that Wp'" can in no reasonable way be realized even as a space of
generalized functions, say, distributions, such spaces being locally convex.

The organization of the note is as follows. Section 2 contains a technical
lemma. In Section 3 we prove the above mentioned properties of Wpm in the
special case m = 1 (including the original counter-example by Douady). In
Section 4 we then outline the extension to the case m > l. In Section 5 we
consider the dual space. Rather than using the previous results directly we
prefer to base our proof here on a general lemma concerning the dual of
certain quasi-Banach spaces of functions. Finally, in Section 6 we briefly
mention an (unequivalent) less pathological definition of Sobolev space,
and in Section 7 we correlate our findings with the point of view of vector­
valued functions.

2. A TECHNICAL LEMMA

Let cm be the space of m times continuously differentiable functions over I.
Let c+m be the space of m times "piecewise continuously differentiable"
functions, i.e . .fE C+m

-¢;>f E Cm-1 and /(m-1) has at every point left and right
derivatives which have only a finite number of points of discontinuity in I.
Thus every f E C,m can be represented in the form

n

f ' f' ,~( )'", =, 0 + f..., Cv x - Xv + ,
v=l

.fo E C"', CV real, Xv E 1 (v = 1, ... , n) (2.1)

where
if x > 0,
if x.:'( 0.

LEMMA 2.1. The spaces Coo and C+'" have the same completion W p '" in the
seminorm (1.1).

Proof It suffices to show that Coo is dense in C+"'. Since it obvious that
Cor; is dense in e"', it thus also suffices to show that em is dense in Cf-m. In
view of the representation (2.1) again it is sufficient to approximate the
function.f(x) = x+"', x E I, by functions in Cm. Let If! be any function in ern
such that

IX'"
rp(x) = 10

if x;.? 1,
if x.:'( 0,
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Setfv(x) = v-lIIcp(vx), x E I. From f~i)(X)= vi-mcp(f)(vx) it is easy to see that
f~i)(X) tends to f(f)(x) as v tends to 00, uniformly if 0 :c:; j < rn and boundedly
if j = rn. In any case we thus have !If~i) pi) IlL -+ 0 so the desired con-
clusion II fv -- fUw m -+ 0 is obtained. "

• p

3. THE CASE m= I

By Definition 1.1 (with m= 1) the elements of W/ are equivalence classes

of "fundamental sequences" Lfv}~ol in CO"" such that I!f,- f" Ilw"l -> 0 as
min(fl-, v) -+ 00. (Two fundamental sequences {Iv} and Lliv} are in the same
class iff!lfv -gvl,wp1-+0.) In view of Lemma 2.1 (with m I) we may as
well substitute the class C 1 for ex,. It is plain that if {f,} is a fundamental
sequence, for the W/-quasinorm, corresponding to fe' W/, then U;} and
Lfv'} are fundamental sequences too, for the Lp-quasinorm. Since L]I is
complete, it follows that they are convergent in L 1). Let af and Sf' be the
limits. It is plain that ex: WJ)l -->- LJ) and 8: Wpl -->- LJ) are linear continuous
mappings. Indeed since clearly by (l.l)

(3.1)

we have

which implies the continuity.
We begin by reproducing the counter-example of Douady (previously

also stated in [6n.

PROPOSITION 3.1 (Douady [3]). The mapping ex is not a monomorphism.

Proof: We have to produce a sequence UJ in C/ such that

If;- f~ Ilwl,l -> 0, --> 0, (3.2)

Then U;} represents an element 0 F fE W p l with (Xf c .. O. Let {r]v} be a
sequence of real numbers such that V1)v is decreasing and -->0. We define

f(x) = jX, if O:c:; x ~;: I/v,
II IV1)v(1 Iv -+- 1)" -- x), if Ilv:C:; x:~ Ilv 1)"

and extend it by periodicity to the entire real axis and take finally the restric­
tion to I.
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We have

f'(x) ~c \ I if
l-lfJlY)v

It is now easy to see that

o :(: x :(: IfJl,
if IfJl:(: x:(: IfJl + Y» .•

" r II -- ClfI!jv i!L p ~ v,

if f-L ~ JI,

where C is a positive constant. Utilizing effectively 0 < p < 1 we thus see
that the requirements (3.2) are met. Thus we get an f oF 0 with IXf = O. Indeed
we have &f = 1.

Remark 2.1. Nothing essential happens if we substitute L p for the
Lorentz spaces L pQ , 0 < p < 1, 0 < q :(: 00 (leading to Lorentz--Sobolev
spaces W~ rather than Sobolev spaces Wpm). However if we take the space
L 1Q the construction of Proposition 3.1 breaks down even if q > I. The case
q = 00 might be particularly interesting. It is known that L 1ro is to some
extent less pathological than L p , 0 < p < 1, so maybe this will be the case
too for W1

m • E.g., it is known (Haaker [4], Cwikel and Sagher [1]) that the
dual of L 100 is not O. The space L 100 (sometimes known as the Marcinkiewicz
space) appears also in classical analysis: It is known that the L 1 image of
many classical operators (Hardy-Littlewood maximal operator, Hilbert
transform etc.) is contained in L 100 •

Now we proceed to the retraction f3 of IX mentioned in Section 1.

PROPOSITION 3.2. There exists a continuous linear mapping f3: L p~ Wpl

such that !X 0 f3 = id, [) 0 f3 = O.
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Proof Let S be the space of "simple" functions (i.e., g E S ¢> g has at
most a finite number of would-be discontinuities ti (i = 0, ... , N),
a .= ~o < ~l < < ~N = b, and is constant in the intervals between these
(gil' gi) (i~. I, , N». Since S is dense in L p it suffices to construct f3g for
g E S. A sequence {tv} is called a regular fundamental sequence for g E S if
Iv E C/ is of the following type: I is constant except in "small" intervals
containing the would-be discontinuities. If t = ti E J is a would-be discon­
tinuity of g, j~ is taken to be linear on some small interval .I .Ii with center
ti, say, of length a = ai,. It is required of course that ai,," 0 as I'" CfJ

(which is the precise qualification of "small")

FIGURE 2.

We have Iv' = ala throughout.l, if a denotes the size of the jump of gat t.
The contribution to 111v' IlL of the point g is thus of the magnitude Ila' al / JI •

Utilizing again 0 < p < 1 we see that lilv - II' Ilw 1 -+ 0 so that {Iv} is
effectively a fundamental sequence. It is also plain that two regular funda­
mental sequences are equivalent. Thus to each g E S we have associated a
unique element I = f3g to W"i. It is obvious that II f3g ilw [ = II gilL . It is
likewise perfectly obvious that cx(f3g) ~= g and o(f3g) = O~ The only thing
that remains is to check that f3 is linear. To this end let g .= gl + g2 and
pick up two regular fundamental sequences U}} and Uv2} for gl and g2,
respectively, choosen in such a way that the would-be discontinuities ti are
the same and also the small intervals .I'i around ti' Then it is plain that
{f, l +1v2

} is a regular fundamental sequence for g. This proves additivity
f3(gl + g2) = f3gl + f3g2. Homogeneity f3(t.g) .= :\f3g, on the other hand, is
obvious. The proof is complete.

Next we state the consequences of Proposition 3.2.
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COROLLARY 3. I. We have Wv1 ~ Lv ttJ Lv . An isomorphism is provided
byf,~ (f3af, of). We have of = °iff f is of the form f = f3g.

Proof This follows at once if we invoke the following general algebraic
lemma. (We note that (3) is fulfilled in view of (3. I).)

LEMMA 3.1. Let X, Y, Z be vector spaces and let a: X ~ Y, fi: Y~ Z,
0: X ~ Z be linear mappings such that:

(1 ) a 0 f3 = id,

(2) 00 f3 = 0,

(3) ex ttJ 0 is a monomorphism,

(4) 0 is an epimorphism.

Then X = 1m f3 + Ker a. In addition 1m f3 ~ Y, Ker a ~ Z so that
X ~ Y ttJ Z. Also 1m f3 = Ker o. If X, Y, Z are topological vector spaces
and a, f3, 0 continuous then the isomorphisms and the direct sums are topological.

(Here +stands for the direct sum = linear hull, and ttJ for the abstract
direct sum.)

Proof Let f E X. Then f = A +h with A = f3af, .h = f - {Jaf It is
clear that fl E 1m f3. On the other hand since ah = af - af3af = af -- af =

o - °= °we have also f2 E Ker a. Conversely ifI= II +I2 with II E 1m f3,
I2 E Ker a we find aI = aA, f3aI = f3aA = A and I2 = I - II = f - {Jaf
Thus we have proven X = 1m f3 +Ker a. Since f3 evidently is a mono­
morphism we have Jm f3 ~ Y. Uptil now we only used (1). Let nowIE Ker a.
Then by (3) we cannot have of = °unless I = 0. Le., 0 I Ker a is a mono­
morphism. On the other hand, since in view of (2) 0 Jm f3 = 0, it is by (4)
an epimorphism. Thus Ker a ~ Z. There remains the relation 1m f3 = Ker o.
By (2) 1m f3 C Ker 0 is obvious. To prove :J let thus oI = 0. Write again
f =.h +/2 withA == f3af,I2 == I - f3af Then a/2 =, aI - af3af = af -- aI = 0,
of2= of - of34 =c= O. Therefore,f2 = 0 andf =.h = f34C Tm f3.

COROLLARY 3.2. We have W/ ~ L p •

Proof This follows at once from Corollary 3.1 using the well-known
fact that L p L p ~ L p •

4. EXTENSION TO THE CASE m > 1

We now very quickly sketch an extension of the results of Section 3 to
the case m > 1.
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We consider the space Wp'll. By Definition 1.1 (now with m I) the
elements of Wpm are again equivalence classes of fundamental sequences
UJ:l in C n such that If; -- f" ->- O. By Lemma 2.1 we may replace C~

by C+m. The mappings 0:: Wpm ->- Lp" and 0: Wpm - >- W~'-l are defined in
an analogous fashion as in the case me, I. In particular we have corre­
sponding to (3.1)

(I 8j'llj:;,m_l)LfJ.
• I 1) (4.1 )

We have not attempted to generalize directly the Douady counter-example
(Proposition 3.1). Instead we proceed at once to the generalization of
Proposition 3.2.

PROPOSITION 4.1. There exists a continuous linear mapping f3: L p ->- Wp"'
such that 0: 0 f3 = id, 0 0 f3 ,= 0.

Proof (Outline). The only difficulty, compared with the case m ~~ I, is
to find an adequate notion of regular fundamental sequence for g E S. For
simplicity we take g =c= 1+ (i.e., xl" with m .c= 01) and in order not to com­
plicate the notation In = 3. We choose the "small" interval J with center
~=°of length a + 2b -+- 4c for some a == av , b = bv , c Cv • We also
assume abc. We choose f ~=.tv in such a way that 1''' is, with some
A = Av , successively counted from left to right A, 0, -A, 0, -A, 0, A on
intervals of length c, b, c, a, c, b, c, respectively.

-A

,..
I 4!'"
1'.

I

~
FIGURE 3.
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]n order to make f match with] + we have to require that Aabc ~ I. On
the other hand the contribution of1"', (",j' to ilfliw 3 is of the orders Ac1 / P,

Acb1 / ", Abca1 / P, respectively. Thus we <have to requi;e that cl/p-la-lb-l --+ 0,
b1/JI-1a-1 --+ 0, a1 / JI - 1 -)- 0, a requirement which obviously can be met, since
°< p < I. It is now obvious that the whole of the argument of Proposi­
tion 2.2 can be carried over.

Proof Lemma 3.1 is still applicable.

COROLLARY 4.2. We have W/" R:; L p •

Proof Induction over m together with L)) R:; Lv Lv.

5. THE DUAL SPACE

PROPOSITION 5.1. The dual of Wpm is 0.

Proof This follows immediately from Corollary 4.2 since by the well­
known result of Day [2] the dual of L p is °(if°< p < I). We prefer however
to give a direct proof which does not use neither Day's theorem nor
Corollary 4.2 (in full). We first remark that it clearly suffices to prove the
same result for Wpm, the Sobolev space of periodic, say, 217-periodic func­
tions, which is defined in an analogous way as in Definition 1. I. This can be
seen as follows. We may clearly assume that b - a < 217. Let p: UI])'" --)- W1,m

be the restriction map. Clearly p is an epimorphism. If A is a continuous
linear functional on Wp'" then ,\ = AJ P is a continuous linear functional
on Wp"'. So if we know that A= 0 by necessity, it follows that A = O. Next
we invoke the following general lemma, which might have some interest of
its own.

LEMMA 5.1. Let E be a quasinormed space of periodic functions. Assume
that (I) [;70 is a dense subset of E, the injection of [;L into E being continuous,
(2) E is translation invariant, the quasinorm being translation invariant too,
(3) E is invariant for multiplication with C'CD functions. If there exists at least
one continuous linear functional A ¥= 0 in E then AU) = f~7)f(x) dx must be
a continuous linear functional too. In other words, there holds the inequality:

If" f(x) dx I ~ CiifllE (5.1)
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In our case (5.1) gives

JAAK PEETRE

Using now the approximation device of the proof ofProposition 4.1 (indicated
for m ~. 3) we see that

I
i (" I(x) dx I ~( C iifh

p
'U I

(fE S),

which obviously cannot be true if a <: p <~ I. (Take f to be a characteristic
function of an interval of length I and let I tend to 0.) The (alternative) proof
of Proposition 5.1 is complete.

There remains the proof.

Proof of Lemma 5.1. Denoting the dual space by E', if OF AE E' then
we must have A(e i"") =F a for some integer n. Thus upon replacing A by X
defined by XU) = A(ein"f) we may assume that A(I) =c 0, say, A(l) = c.
(Here we have invoked condition (3).) We may also assume that II AII =c I.
Next we replace A by ;\ defined by '5..U)'= 1/27T J~" AU;,) dh (where j;,(x) =

I(x + h) denotes the translation of1(x». We see that we may assume that A
is translation invariant too (now condition (2) has been used !). But the
restriction of A to L'oo is a (periodic) distribution and the only translation
invariant distributions are the constant functions. Hence we get

f
2"

AU) cc= c I(x) dx
o

and (5.1) follows with C = c 1
.

Remark 5.1. Note that Lemma 5.1 applied to E = L p incidentally
gives a new proof of Day's theorem. (This is of course nothing but the proof
of Proposition 5.1 in the limiting case m = 0.) The same argument applies
to L pq if°< p < 1,0 < q < 00 (cf. Haaker [4]).

6. A LESS PATHOLOGICAL DEFINITION

If 1 ~ p ~ 00 there are several alternative equivalent definitions of
Sobolev space. If 0 < p < 1 (if they generalize) they need not be equivalent
anymore. In the preceeding Sections we have used one such definition
(Definition 1.1). This has lead us to pathology only. Therefore we now
suggest still another one. For simplicity we state it for the case m ~= 1 only.
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DEFINITION 6.1. if/,/ is the space of functionsfE Lv which are "differen­
tiable in quasinorm," i.e., there exists a functioni' E Lv such that

J~nI I l(x + I~ - .I (x) - F(x) IP dx -* 0,

where Ih =c [a + h, b -+ h] is the translation of I by h. We equip ~/f/~1 with
the following quasinorm:

f .1/P /
fiifF,,' = Uilw,,' + sup l !l(x + h) - l(x)!!, dx) 1 h [.

h IrJ_h I ,

It is now a simple excercise of functional analysis to show that if/o1 indeed
is complete. Moreover 1f/p 1 is continuously embedded in L p • In [6] some
(mostly fragmentary, though) results for related space Lippe of Lipschitz
continuous in the Lv quasinorm functions were obtained. In particular it
was shown that LiPve is embedded in L 1 , if 8 + 1 > lip and 0 < 8 :s; 1
(the latter is probably a merely technical restriction). The proof adapted to
the present case shows that if/p 1 can be imbedded in L 1 , if P >~. It is
conceivable that p > t is the right bound. (Indeed we have reasons to suspect
that the dual of if/v1 is 0 if 0 < p <on

7. THE POINT OF VIEW OF DIFFERENTIABLE FUNCTIONS

Let A be any quasi-Banach space (i.e., a complete topological vector
space the topology of which comes from a quasinorm). We consider periodic
functions cp with values in A. (For simplicity we consider the periodic case
only.) The space of all continuous periodic functions cp is denoted by C(A).
It is a quasi-Banach space for the quasinorm,

Ii cp Ilc(A) = sup Ii cp(h)iIA .
h

We next introduce the space ('l(A) as the completion of C'OO(A) in the quasi­
norm

If A = Lv the assignmentfr-->- cpf(h) = fh (translation) defines an embedding
of W/ into (;l(L v)' The Douady counter-example (Proposition 3.1) can now
be rephrased as follows: The space (;l(A) cannot in general be embedded in
COCA). (There prompts now the question if this is the case for other spaces
than A = Lv, cf. Remark 4.1.) On the other hand (cf. Definition 5.1) if we
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introduce 't1(A) as the space of continuously differentiable functions,
equiped with the quasinorm

fJ! II'tl(A) = II fJ! lic'(A) -+- sup II crUz
h.k

k) -- cr(hWA/1 k 1,

we obtain a quasi-Banach space which is continuously embedded in L'CA).

SUMMARY

It is shown that the (conveniently defined) Sobolev space W,/", m integer
>0, 0 < P < ], is isomorphic to L p • Consequently its dual is O.

Note added in Proof The best generalization of Sobolev spaces to 0 < fJ 1 is however
obtained by substituting for L" the Hardy class HI' . Then practically all the usual properties
of Sobolev (and Besov) spaces for 1 p 'j carryover to the full range 0 < P c/.

This is possible by virtue of the real variable characterization of HI' due to Fefferman
Stein (Acta Math. 129 (1972),137-193). See e.g. my lecture notes "New thoughts on Besov
spaces" (hopefully to be published at the Duke University Press).
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